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Abstract: A new interpolation method is used for Spatial Interpolation Comparison
(SIC) 2004 exercise. The new interpolant is constructed by use of Dirac delta function
and Monte-Carlo (integration) method. The interpolant is dependent upon “coordinate
separation” rather than “distance”. Mathematical treatment of the Dirac-Monte Carlo
(DMC) method has been given in detail in this paper. Interpolation calculations were
done with two input files provided for the exercise. Comparison between the calculated
and the true radioactivity measurement was made. Error analysis and uncertainty,
together with measure-of-merit had been given. Contour maps for the estimations are
presented for both input files. New and future development of DMC method were
discussed. [Description of SIC 2004 exercise and data set used can be found at:
http://www.ai-geostats.org/events/sic2004/]
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1. INTRODUCTION

A formulation of new interpolation method, Dirac-Monte Carlo method (DMC),
is presented in this paper. Though DMC method produces interpolants in arbitrary
dimension  (1, 2, 3,..10,...100,....) in a straightforward manner, interpolant in terms of
Cartesian coordinates for two-dimension space is described in detail in this presentation
for SIC2004 exercise.

DMC method was published at Random Data Interpolation Center (RDIC) in
2002 by our organization (FANG, INC.) on the web at the following address:
http://www.fanginc.com/main.htm and it has been continually updated ever since. RDIC
is dedicated to solve interpolation problems with given input data at random locations.
As the title of this paper indicates, DMC method is aimed at providing solutions for
multi-dimension and real-time applications. In this context, we are delighted to
participate in SIC2004 exercise to demonstrate the merits of DMC method. There are a
few aspects of DMC method that need to be pointed out up front. The method does not
perform any “data dependent” analysis (no variogram study) prior to the actual
interpolation in contrast to Kriging and it does not give emphasis to the process of
“detection of outliers and anomalies” either. The method honors every input function
value and is strictly based on mathematics and statistics. DMC interpolant is application
independent, and the interpolation results produced are numerically stable and
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statistically assured. Furthermore, the method does not employ transcendental functions
nor any computing intensive procedures (such as root finding, curve fitting,
optimization, etc.). Hence, the method is particularly helpful in cutting down the
computing time and generating answers in real-time which is of course vital to deal with
emergency situation in the environment, for example, surge of radioactivity ( same like
SIC 2004 joker data set), biological agent or chemical substance. Finally, on the
operation side of the method, it needs input value for “delta width” or “kernel
bandwidth” (to be explained in the following section) for each dimension. For SIC 2004
exercise, it needs two delta width values, one for x-axis and one for y-axis. DMC
method provides first-cut value for delta width but the value can be and should be fine
tuned based upon the practitioner’s expertise on the problem at hand.

2. METHODOLOGY

It is challenging to construct “interpolant” which can be deduced through
mathematical analysis by use of given input function values at random locations. The
well-known Lagrangian interpolation formula (ref. 1) in one-dimension is still in use
today. However, the Lagrangian formula can not be shown through mathematical
derivation. Therefore, it is not straightforward to extend the formula to 2-dimension and
above. Popular interpolation methods (Shepard’s distance-weighted, Hardy’s
multiquadrics, Kriging, etc.) have been developed and practiced successfully in the past
few decades in different industries, as well as in scientific and engineering research (refs
2, 3). On the other hand, in statistics community the so-called nonparametric kernel
regression (ref. 4) has been studied in the past 50 years, and many analytical results have
been discovered, including interpolants (called estimators) and their associated errors
and convergence rates. In fact, the original Shepard’s interpolant looks somewhat similar
to the well-known “Nadaraya-Watson estimator” practiced in kernel regression analysis.
Starting from a different approach through our observation, we are able to derive
analytically, and establish quickly the interpolant formula for 1-dimension, 2-dimension
and any  higher dimension. The interpolant found in Dirac-Monte Carlo method has been
identified and it is closely related to Nadaraya-Watson estimator. However, one distinct
feature of DMC interpolant, different from other interpolants/estimators, is that DMC
interpolant is dependent upon individual “coordinate separation”, not on the “distance”.
This difference makes DMC interpolant capable of handling non-convex domain (For
example, in between two concentric spherical shells in 3-D or two concentric circles in
2-D, or L-shape corridor.). With the help of Dirac delta function, it is straightforward to
generalize DMC interpolants in terms of non-Cartesian coordinates, such as polar
coordinates, spherical coordinates, cylindrical coordinates, etc. (ref. 5). Furthermore, the
uncertainty analysis of DMC interpolant is derived directly through the use of Central
Limit Theorem and radically different from the findings of kernel regression method.
Due to the fact that DMC is a new interpolation method, we present the mathematical
analysis below to describe DMC method. (Please also view web pages, including
references, FAQs, and comparison with other intepolants provided at RDIC)

First, the two ingredients, Dirac delta function and Monte-Carlo method, used in the
formulation are presented:

(1)  Dirac delta function  (Refs. 6, 7)
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Dirac delta function is a special impulse, weighting function which has the following
properties:

f (x) = f x x x dx
a

b

( ') ( ' ) 'δ −�  ;  where a<x<b (Eq. 1)

 f (x) is continuous and bounded;

           δ (x’-x) = 0   when x’ not equal to x

            δ (x’-x) = ∞  (infinity)  when x’ equal to x

            δ
−∞

+∞

� (x’-x)dx’ = 1 ; (Eq. 2)

Note that the delta function was introduced by Paul Dirac in theoretical physics in the
early 20th century. The function has been given a rigorous, mathematical treatment by L.
Schwartz with theory of Distribution. A number of analytical expressions of delta
function are commonly used in the literature. They exist in the forms of rational
function, transcendental function and infinite series expansion. The rational function
below will be used to represent Dirac delta function in our work.

         δ (x’-x) = 
1

2 2π [
( ' )

]
∆

∆x x− +
               (Eq. 3)

where the width ∆  is a small quantity. It should be said that the rational function in
(Eq. 3) is known as “Lorentzian” or “Breit-Wigner distribution” in physics and widely
used for “resonance” phenomena in classical mechanics and quantum mechanics. It is
also known as “Cauchy density” in statistics. A graphical display of delta function (Eq.
3) is shown in Figure A, where ∆ =0.1 and ∆ =1.0 with x=0. The abscissa is x' axis and
the ordinate Y is Dirac delta function.

Figure A. Dirac Delta Function
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Note that the smaller ∆  is, the higher the peak will be and the more narrow the peak
will become. Dirac delta function is peaked symmetrically and drops quickly towards
zero value. The function has half peak value when x’-x = ± ∆ . The area under the curve
is always equal to 1 according to Eq. 2. In theory, it demands that the width approaches
zero. However, in numerical computation, it can be set to a small (relative to the domain
interval) and finite number. The delta width is an important parameter and will be
discussed further later in the section.

(2)  Monte-Carlo Integration  (ref. 8 and ref. 9)

In the late 1940’s, a novel technique was developed by E. Fermi, J. von Neumann, and
S. Ulam in the area of evaluating integrals numerically. The method has been proven a
powerful tool to handle computations of multi-variable problems in diverse subjects,
physics, chemistry, biology, economics etc. In particular, Monte-Carlo method has been
a great help to numerically evaluate multiple integrals in applications. There are two
fundamental theorems behind Monte-Carlo method: (a) Strong law of large numbers;
(b) Central limit theorem. They are briefly stated below to facilitate the presentation of
Dirac-Monte Carlo method.

(a)  Strong law of large numbers

If a sequence of N random variables x1 to xN are picked from a population with
the probability density function g(x) and a new random variable A defined by
the equation,

A= �
=

N

i
ixZ

N 1

)(
1

, (Eq. 4)

where Z(x) is a given integrable function, and if the integral

�
+∞

∞−

= dxxgxZZ )()( (Eq. 5)

exists, then A, with probability 1, approaches Z  as a limit as N approaches
infinity.

(b)  Central limit theorem

For large N, the probability density distribution of A, G(A), is Gaussian,

centered at Z  with a standard deviation (
1
N

) times that of the distribution of

Z,

G A

N

A Z

N
N( )

( )

( )

( )
exp[ ]→∞ → −

−1

2 2

2

2π
σ σ                (Eq. 6)
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where σ  is the standard deviation of Z.(That is, σ 2 2= −( )Z Z ). The above

result is independent of the nature of Z(x) or g(x). In essence, the probability
that the deviation of

A from Z  will exceed 
N

σ± is 31%, 
N

σ2±  4.5%, 
N

σ3±  0.3%.

Now, the formulation of Dirac-Monte Carlo (DMC) interpolation is described below. We
observe that the following equation exists,

0
1

1

=−� − dx'x)(x'�

b

a
f(x)][f(x') (Eq. 7)

where x is the arbitrary value of x’ variable and a1<x<b1,  f (x’) is continuous and δ ( ' )x x− is the
Dirac delta function. Next, using the density function defined as,

g(x’) =  1/(b1-a1),   for a1<x’<b1,    and    g(x’) = 0,  otherwise;                     (Eq. 8)

(Eq. 7) is recast by use of (Eq. 4) and Z(x) = (b1-a1) )'()]()'([ xxxfxf −− δ , M’=N , and it
gives,

     
( )

0)()]()([
'

'

1

11 ≈−−−
�

=

xxxfxf
M

ab
i

M

i
i δ          (Eq. 9)

and

                         )()]([)()(
'

1

'

1

xxxfxxxf i

M

i
i

M

i
i −≈− ��

==

δδ

Then,  fA(x)is defined as,

     fA(x) = 

[ ( )] ( )

( )

'

'

f x x x

x x

i i
i

M

i
i

M

δ

δ

−

−

=

=

�

�

1

1

(Eq.10)

where xi are randomly chosen in the interval (a1, b1). It can be seen that by providing xi, and

f (xi), (Eq. 10) can be used to interpolate the function f (x) at location x where a1<x<b1. Note
that f

A
(x)is the searched interpolant. The accuracy and the convergence of  f

A
(x) are governed
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by the central limit theorem which gives 
'

1

M
 dependence (See ref. 6). With higher M’ value,

f
A 

(x) will approach closer to f (x). It should be said that (Eq. 10) has the same form as the
famous nonparametric “Nadaraya-Watson” kernel regression estimator, fNW (x) which is defined
as, (ref.10 an ref. 11)

fNW (x)    =    

�

�

=

=

−

−

'

1

'

1

)(

)()]([

M

i
iH

M

i
iHi

xxK

xxKxf
  where )()

1
()(

H
xx

K
H

xxK i
iH

−
=−

Compare the above equation with Eqs. 10 and 3,  one obtains that )( xxi −δ = )( ixx −δ =

KH (x - xi ) and ∆ = H. Furthermore,

]
1)(

1
)[

1
()()( 2 +−

=
∆
−

=
−

i

ii

xx
xx

H
xx

K
π

δ

H factor is also called “width” or “band width” in nonparametric kernel regression and controls
the kernel smoothing property. The connection between Dirac-Monte Carlo method and
nonparametric kernel regression can be understood because Dirac delta function is defined as a
special “local, weighting function”.

For 2-dimension Cartesian space, (Eq. 7) and (Eq. 9) are generalized respectively to,

[ ( ', ') ( , )] ( ' ) ( ' ) ' 'f x x f x x x x x x dx dx
a

b

a

b

1 2 1 2 1 1 2 2 1 2 0
1

1

2

2

− − − =�� δ δ    (Eq. 11)

 fA(x1,x2)= 

f x x x x x x

x x x x

i i i i
i

M

i i
i

M

( , ) ( ) ( )

( ) ( )

'

'

1 2 1 1 2 2
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1 1 2 2
1

δ δ

δ δ

− −

− −

=

=

�

�
(Eq.12)

With the use of (Eq. 3), we rewrite (Eq. 12) as,

fA(x1,x2)= 

�

�

=

=

∆+−∆+−

∆+−∆+−
'

1
2

2
2

22
2

1
2

1
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1
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2
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1
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M
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M

i ii

ii

xxxx

xxxx

xxf

     (Eq. 13)

The above equation (Eq. 13) is the 2-dimensional interpolant which is used to perform the
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calculation for SIC 2004 exercise. Note that x1 is the x-coordinate and x2 is the y-coordinate.
Thus, (x1i,x2i)is the ith input random location and f(x1i,x2i) is the associated natural
ambient radioactivity. (x1,x2) is the requested location where radioactivity is to be
calculated. M  ‘  is the total number of input locations which is 200 according to SIC 2004 data
sets. With ∆ 1 and ∆ 2 values given (preset), (Eq. 13) can be used to calculate the interpolated
function value, fA(x1,x2).It can be seen that the interpolant, (Eq. 13), depends on the
“product”of two coordinate-separation terms,

[(x1i-x1)2+ ∆ 1 2] [(x2i-x2)2+ ∆ 2 2]

and not on the distance which is defined as the square root of (x1i-x1)2 + (x2i-x2)2 . Due to the
intrinsic character of random nature of Monte-Carlo method, the interpolant is
particularly suitable to solve SIC 2004 exercise. It should be said that ∆ 1 and ∆ 2 values
can be estimated within the framework of DMC. The following formula can be found (See ref.
6),

1
'

))((

21
2

2211 ≈
∆∆
−−

πM
abab

        (Eq. 14)

By assuming ∆ 1 = ∆ 2, (Eq. 14) becomes

1
'

))((
2

1
2

2211 ≈
∆

−−
πM

abab
        (Eq. 15)

One can easily calculate the value of ∆ 1  when the interval length )( 11 ab − for x-axis and

)( 22 ab − for y-axis are provided .

We now begin the analysis of accuracy of (Eq. 13) and present the error analysis
in terms of the famous Central Limit Theorem. Recalling (Eq. 9) and changing the
“approximate” sign to “equal” sign”, we obtain

( )
Exxxfxf

M
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i

M

i
i =−−−

�
=

)()]()([
'

'

1

11 δ

( ) E
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M
xxxfxxxf i

M

i
i

M

i
i

11

'

1

'

1

'
)()]([)()(

−
−−=− ��

==

δδ

where  E is the statistical error due to Monte-Carlo method and E is also dependent on x. The
interpolant fA is defined by (Eq. 10). So, the absolute error between f(x) and fA(x) is,

|f(x)- fA(x)|=

| ( )

�

�
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=

−
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Note that the denominator is always “positive” and “not equal to zero”, and for 2-dimension
case, the above equation is generalized to,

|f(x1, x2)- fA(x1, x2)| = ( )( )
�

=

−−−− '

1
2211

2211 )()(
'

||
M

i
ii xxxx

M
abab

E

δδ

          (Eq. 16)

where )( 11 xx i −δ and )( 22 xx i −δ are defined by (Eq. 3).Note that on the right hand side of

(Eq. 16), the denominator can be computed for the requested location (x1, x2) and the
numerator E is governed by the Central Limit Theorem. As said earlier about (Eq. 6), the

deviation error E will exceed 
N

σ± with probability 31%, 
N

σ2±  with probability 4.5%,

and  
N

σ3±  with probability 0.3%. Again, N is equal to the input location number M ‘.

All needs to be done is to find the value of σ  and we shall do so as follows.

Let us recall Eq. 5,

�
+∞

∞−

= ')'()'( dxxgxZZ

Compare the above integral with Eq. 7,

')'()]()'([0
1

1

dxxxxfxf
b

a

−−= � δ

We obtain,

0=Z

(b1-a1) )'()'()]()'([ xZxxxfxf =−− δ

and the density function,

   1/(b1-a1),  for a1<x’<b1

g(x’) =

       0,    otherwise



9

By definition σ 2 2= −( )Z Z and 0=Z , it gives 22 Z=σ .

22 Z=σ = �
+∞

∞−

')'())'(( 2 dxxgxZ                      (Eq. 17)

(Eq. 17) can not be calculated because it involves the unknown function f(x’). However, the

sample 2σ can be computed by use of,

22 Z=σ = 
'

1
M
�

=

'

1

2
M

i
iZ  = 

'
1

M
2

'

1
11 )]()]()()[[( xxxfxfab i

M

i
i −−−�

=

δ

  (Eq. 18)

The 2-dimensional case of (Eq. 18) has the following form,

22 Z=σ = 
'

1
M
�

=

'

1

2
M

i
iZ =

'
1

M
2

221121

'

1
212211 )}()()],(),()[)({( xxxxxxfxxfabab ii

M

i
ii −−−−−�

=

δδ

                                                                                             (Eq. 19)

The above equation and (Eq. 16) were used to calculate the uncertainty for the interpolation
output results of SIC 2004 exercise. The function value f(x1, x2) was set to the measured, true
value which was provided by SIC 2004 (1st_file_true_values.csv & 2nd_file_true_values.csv).
In the event when no measured value is given, then f(x1, x2) can be set to the interpolated
value, fA(x1, x2). We note in passing that, by reducing the delta width ∆ 1 and ∆ 2 used in (Eq.

13) towards zero, the interpolation semi-norm, �
=

−
'

1
2121 ),(),(

M

i
iiAii xxfxxf  approaches zero

as well. This  property of semi-norm approaching zero will remain true in our formulation for
any higher dimensional space.

2.1 Use of prior information

Due to the simplicity of DMC interpolation process, the prior information (10 days of
measurements) were not used at all, except for tuning the delta width explained in the following
section. DMC method treats different input data sets the same manner, independent of anomaly
which may exist in the data set.

2.2 Tuning the algorithms

The only thing which needs to be tuned in using DMC interpolant is the “delta width”
value. We present below how ∆ 1 and ∆ 2 values are estimated for SIC 2004 exercise.
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By using (Eq. 15), and )( 11 ab − for x-axis is set approximately at 360,000 meters

and )( 22 ab − for y-axis at 700,000 meters for SIC 2004 exercise. It is straightforward to
calculate and find ∆ 1 and ∆ 2 values. They are,

∆ 1 = ∆ 2 = 11,300 meters

These are first-cut values for ∆ 1 and ∆ 2. Now, we can fine tune these values by firstly finding
the maximum peak and minimum valley locations of prior radioactivity measurement
information of any day (Due to the shortage of time, only one day measurement was used. We
“randomly” chose the second day measurement data.), secondly finding the requested locations
that are closest to the maximum peak and minimum valley locations, thirdly computing
repetitively the interpolated value at these requested locations by use of (Eq. 13) by gradually
changing and reducing  ∆ 1 and ∆ 2 values, and lastly stopping the previous step when the
interpolated value is “reasonably” close to the data value at the peak and the valley location. To
decide what value is considered as “reasonable” largely depends on the practitioner’s
experience and judgment for the problem. It should be said that to choose smaller values of ∆ 1

and ∆ 2 than necessary will end up producing interpolation results with large variations (That is,
not smooth) and large σ  value across the supported domain. Generally speaking, smaller delta
width will produce larger range of interpolated function values and bigger delta width will
produce smaller range of interpolated function values. At the end of the above tuning process,
we chose  ∆ 1 = ∆ 2 = 4000 meters for the exercise.

3. RESULTS

In the following analysis, two input data files were used in the exercise. The second
data file is the “joker” data set. Please note that only 800 (not 808) estimated values were
generated in our work. The last 8 locations in the output location file were not used.

3.1. Overall results

The table below gives the minimum, maximum, mean, median and standard deviation of
the 800 estimated values and the observed values for both data set 1 and 2.

 N = 800 (not 808) Min. Max. mean median std. dev.

Observed (first data set) 57 180 98.21 99 19.97

Estimates (first data set) 66.49 145.53 96.91 99.57 14.34

Observed (second data set) 57 1528.2 105.6 99 84.01

Estimates (second data set) 67.15 775 108.95 102.14 59.5

Table 1. Comparison of the estimated and measured values (nSv/h).

The mean absolute error (MAE), the bias (or mean error ME), and the root mean squared error
(RMSE) of the predictions at the n = 800 locations are given in the table below. These quantities
are defined as,

�
=

−=
n

i
ii ff

n
MAE

1

*1
,
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( )�
=

−=
n

i
ii ff

n
ME

1

*1
 ,

�
=

−=
n

i
ii ff

n
RMSE

1

2* )(
1

,

where f*i (defined as the estimated value at location i and where fi  is the true value. Note that
earlier f*i is defined as fA (x1i , x2i ) and fi is defined as f (x1i , x2i ). Pearson’s r coefficient of
correlation between the estimated and true values is also given.

Data sets: (N = 800) MAE ME Pearson’s r RMSE

First data set 9.67 -1.29 0.75 13.21

Second data set 19.91 3.26 0.61 66.80

Table 2. Comparison of the errors.

1)  Estimations:

Figure 1. Isoline levels (nSv/h) for the 1st set (let) and the 2nd set (right).

2 maps above present contour lines obtained for the two datasets. The colour scale is
black and white, with colour white for level 50 and black for levels above 200. Intervals are of
10 nSv/h. Crosses point to the locations of the estimated values; empty squares are used to
indicate the locations of the input values.
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The maps in Figure 1 are generated by use of the estimated values at 800 random
locations. With the use of DMC interpolant ( ∆ 1 = ∆ 2 = 4000 meters) as “gridding method”,
the interpolated values for 800 grid nodes covering the entire area of study are made. The grid
has 20 columns and 40 rows. Then, the contour lines are generated based on the values of 800
grid nodes.

2)  Uncertainty:

Two maps are presented below showing the levels of uncertainty that are associated to
the estimations described in the previous figures which display contour lines obtained for the
two datasets. The uncertainty value |f(x1, x2)- fA(x1, x2)| is defined by (Eq. 16) where E

value is set to the absolute value of 
N

σ2± . Thus, the confidence level associated with the

uncertainty value is 95.5%. Note that (Eq. 19) was used to calculate σ  for 800 output
random locations.

Figure 2. Isoline levels showing the uncertainty  (95.5% confidence level)  associated to the
estimations obtained for the 1st set (let) and the 2nd set (right).

For the first estimation data set, the uncertainty value  has maximum value
92.181 at location # 858, and minimum value 0.819 at location # 671 among all
estimation locations. The median value is 9.771  . For the second estimation data (joker)
set, the uncertainty value has maximum value 1364.648 at location # 545, and minimum
value 1.211 at location # 840 among all estimation locations.    The median value is
12.058  .



13

3.2. Detecting anomalies and outliers.

The following figure displays the estimates obtained for the 2nd set in 3 D, ∆ 1 = ∆ 2

= 4000 meters were used.

Figure 3 3D map showing extreme values found in the 2nd set (vertical scale in nSv/h)

4. DISCUSSION

Dirac-Monte Carlo method is a simple, though guided by the higher-level
mathematics,  interpolation method to use. The interpolant employed in DMC method is
defined by (Eq. 12), and with the choice of rational function (Eq. 3) for the
representation of Dirac delta function, (Eq. 13) is established and it can be easily
programmed for computation. Once the number of input location is given, the user only
needs to preset ∆ 1 and ∆ 2 values for completion of automating (Eq. 13).

As can be seen in Table 1, DMC produces the interpolated values which were
constrained between the maximum and the minimum values of the given, measured input data.
DMC method, similar to Kriging, is capable of producing uncertainty and confidence level data
whereas most of other interpolation methods can not do so. Moreover, It is much faster and
more direct to use DMC to calculate uncertainty values than Kriging.

One thing needs to be said about Figure 1 pertaining to the 2nd (joker) input data set. It
can be seen that on the left edge near 20000 on the Y-axis, there is an artifact “dark blob” (Note
that the same artifact shows up in Figure 3). In addition, there are 2 cross-shape, rather than
circular-shape, dark blobs. This is due to the fact that the joker data set has two high input
values (location 339, with measured value1499 and location 549 with value 1070.4). Also, it is
because that the DMC interpolant is not “distance” dependent but rather “coordinate separation”
dependent, as emphasized before. Whenever an extreme value (positive or negative) exists at an
input location (x, y), this particular input will give long range influence along the horizontal and
vertical direction on the “cross” centered at (x, y). In order to curb this long range effect, it is
essential to enlarge ∆ 1 , ∆ 2 values accordingly. For example, in the current situation, the delta
width values used, ( ∆ 1 = ∆ 2 = 4000 meters), need to be increased. If we use ∆ 1 = ∆ 2 = 8000
meters, the artifact feature is reduced. (see Figure 4 below)
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Figure 4    (Color scale is the same as Figure 1)

The total time for our conducting the exercise between download input data from
and upload output data to SIC 2004 web site is about 10 minutes. Thus, it roughly takes
5 minutes for each input data set to be processed. Within the 5 minutes time, the
computer operator needs to connect to the Internet, perform input/output data file
transfer, zip input/output file, link the input/output files to the software program on the
local PC, execute the interpolation software program, and send back output files. The
next paragraph describes the average  time pertaining to the execution of the
interpolation software program.

The average computational time for both input data sets is about “5 to 6
seconds”. Just about all of this time was used for reading input data file and  formatting
the output data file within the software. The actual computing time for “interpolation”,
that is,  executing (Eq. 13), is much less than a fraction of one second. All computations
were performed on a standard PC with about 2 GHZ CPU. One can clearly see that DMC
method can be used for real-time computational applications, ideal for handling
emergency situations. For more input locations or higher dimensionality, this computing-
time advantage will become even more pronounced as compared with any other
interpolation methods.

5. CONCLUSIONS

DMC interpolation method is a new method. It has been employed to carry out SIC
2004 exercise to generate interpolated data values as well as the associated measures of merit
(such as MAE, ME, Pearson’s r, RMSE ). Furthermore, detailed uncertainty findings for 800
output locations have been given for the confidence level 95.5% in a straightforward and candid
manner by adhering to the formulation of DMC method.
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We highlight ongoing efforts and possible development for DMC method below.

(1)  ∆ 1 and ∆ 2 values could and should be preset differently for some applications. In
addition, they do not have to be constant and could depend upon the location where
the interpolated value is computed. Note that delta width values directly control the
long-range effect mentioned before. This is one area where more study will be
carried out.

(2)  Employ DMC interpolants for applications by means of polar, spherical and
cylindrical coordinates (ref. 5). In radar weather prediction analysis, the so-called
“adaptive Barnes interpolant” was expressed in terms of spherical coordinates. But
its mathematical form was not treated analytically. (ref. 12) With DMC interpolant
expressed in terms of spherical coordinates, the practitioner can use it with ease for
global weather/environment modelling and prediction.

(3)  The input locations where measurements were taken, though random, can be preset
by use of “quasi-Monte Carlo” sampling (ref. 13). By doing so, the interpolated
values will be more accurate.

(4)  Establish subscription center at RDIC to offer DMC capabilities online on the web
to the commercial market.
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Codes

The primary objective of this paper is to present Dirac-Monte Carlo interpolation
method to the geostatistics community. At the same time, we promote the concept of performing
real-time computation on the web by means of standard web pages (HTML and Javascript) as
demonstrated at RDIC (http://www.fanginc.com/main.htm). Numerical interpolation software
used in the exercise was programmed in terms of web pages. Input and output files required to
run the software had been linked to the web pages by simply using “copy” and “paste” PC
WINDOWS features. Inquiry regarding our software can be sent to the email address
“fanginc@gte.net”.
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